GCE Electronics ET2 1142-01

Candidates' performance across questions

7. A simple 3 V regulated power supply is required for a portable media player to be used with a 12 V car battery.

The zener diode requires a minimum current of 8 mA to maintain the zener voltage.
(a) The power supply should be able to supply load currents up to 250 mA . Calculate the ideal value of resistor R.
\qquad
\qquad
\qquad
\qquad
(b) Select the preferred value of resistor that you would use from the E24 series. Give a reason for your choice.
\qquad
\qquad
(c) The output of the car battery varies, and can reach 14.5 V . The battery output is now 14.5 V . Calculate:
(i) the voltage across the zener diode;
(ii) the voltage across resistor R ;
(iii) the power dissipated in resistor R.
\qquad
\qquad
7. A simple $3 V$ regulated power supply is required for a portable media player to be used with a 12 V car battery.

The zener diode requires a minimum current of 8 mA to maintain the zener voltage.
(a) The power supply should be able to supply load currents up to 250 mA . Calculate the ideal value of resistor R .
$258 \sim A$
(b) Select the preferred value of resistor that you would use from the E24 series. Give a reason for your choice.
closest
440 beeracse $\%$ \% 1 b le
(c) The output of the car battery varies, and can reach 14.5 V .

The battery output is now 14.5 V . Calculate:
(i) the voltage across the zener diode
(ii) the voltage across resistor R ;
(iii) the power dissipated in resistor R .

7. A simple 3 V regulated power supply is required for a portable media player to be used with a 12 V car battery.

The zener diode requires a minimum current of 8 mA to maintain the zener voltage.
(a) The power supply should be able to supply load currents up to 250 mA . Calculate the ideal value of resistor R .

$$
258 m
$$

(b) Select the preferred value of resistor that you would use from the E24 series. Give a reason for your choice.

(c) The output of the car battery varies, and can reach 14.5 V . The battery output is now 14.5 V . Calculate:
(i) the voltage across the zener diode;
(ii) the voltage across resistor R ;

(iii) the power dissipated in resistor R .
7. A simple 3 V regulated power supply is required for a portable media player to be used with a 12 V car battery.

The zener diode requires a minimum current of 8 mA to maintain the zener voltage.
(a) The power supply should be able to supply load currents up to 250 mA . Calculate the ideal value of resistor R .

$$
\begin{aligned}
& 250+8=258 m A \\
& 12-3=9 \quad 9-0258=36.9
\end{aligned}
$$

(b) Select the preferred value of resistor that you would use from the E24 series. Give a reason for your choice.
(c) The output of the car battery varies, and can reach 14.5 V .

The battery output is now 14.5 V . Calculate:
(i) the voltage across the zener diode; 3.625
(ii) the voltage across resistor R ;
10.873
(iii) the power dissipated in resistor R . ec P .
7. A simple $3 V$ regulated power supply is required for a portable media player to be used with a 12 V car battery.

The zener diode requires a minimum current of 8 mA to maintain the zener voltage.
(a) The power supply should be able to supply load currents up to 250 mA . Calculate the ideal value of resistor R .

$$
\begin{aligned}
& 250+8=258 m A \\
& 9-3=9
\end{aligned}
$$

(b) Select the preferred value of resistor that you would use from the E24 series. Give a reason for your choice. 33Ω becurse otherwise it could not
 up. te 250 mA \checkmark
(c) The output of the car battery varies, and can reach 14.5 V .

The battery output is now 14.5 V . Calculate:
(i) the voltage across the zener diode; \qquad

$$
3.625
$$

(ii) the voltage across resistor R ;
10.873
(iii) the power dissipated in resistor R . ec P .
7. A simple 3 V regulated power supply is required for a portable media player to be used with a 12 V car battery.

The zener diode requires a minimum current of 8 mA to maintain the zener voltage.
(a). The power supply should be able to supply load currents up to 250 mA . Calculate the ideal value of resistor R .

(b) Select the preferred value of resistor that you would use from the E24 series. Give a reason for your choice.

(c) The output of the car battery varies, and can reach 14.5 V .

The battery output is now 14.5 V . Calculate:
(i) the voltage across the zener diode; 3.625
(ii) the voltage across resistor R ; 10875
(iii) the power dissipated in resistor R .

$$
P=V I \quad \begin{aligned}
& V=10.835 \quad P=3.67 \\
& I=0.34
\end{aligned}
$$

7. A simple 3 V regulated power supply is required for a portable media player to be used with a 12 V car battery.

The zener diode requires a minimum current of 8 mA to maintain the zener voltage.
(a) The power supply should be able to supply load currents up to 250 mA . Calculate the ideal value of resistor R .

$$
1 z-0.7=11.3 x
$$

$$
\frac{13}{8 \times 10^{3}}-14+2-5 \quad 250+8=25
$$

$$
582
$$

8. The following circuit is set up to investigate a transistor switching circuit.

Potentiometer R is varied and readings of $V_{I N}, V_{\text {OUT }}, \mathrm{I}_{\mathrm{B}}$ and I_{C} are taken.
(a) As the base current is increased from 0.2 to 0.8 mA the collector current increases from 16 to 64 mA and the transistor does not saturate.
(i) Complete the graph below to show how the ammeter readings change as I_{B} is increased from 0 to 1 mA . The transistor does not saturate.

(ii) Determine the current gain $\left(\mathrm{h}_{\mathrm{FE}}\right)$ of the transistor.
\qquad
\qquad
(b) A second graph was drawn to show how $\mathrm{V}_{\text {OUT }}$ changed as $\mathrm{V}_{\text {IN }}$ was increased from 0 to 6 V .

Use the graph to determine:
(i) the minimum value of V_{IN} required to saturate the transistor;
\qquad
(ii) the value of $\mathrm{V}_{\text {OUT }}$, when $\mathrm{V}_{\text {IN }}=3.1 \mathrm{~V}$.
\qquad
(c) $\mathrm{V}_{\mathrm{IN}}=3.1 \mathrm{~V}$ and the load resistor $=120 \Omega$.

Calculate the collector current and the power dissipated in the transistor.
\qquad
\qquad
\qquad
\qquad
\qquad
8. The following circuit is set up to investigate a transistor switching circuit.

Potentiometer R is varied and readings of $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{OUT}}, \mathrm{I}_{\mathrm{B}}$ and I_{C} are taken.
(a) As the base current is increased from 0.2 to 0.8 mA the collector current increases from 16 to 64 mA and the transistor does not saturate.
(i) Complete the graph below to show how the ammeter readings change as I_{B} is increased from 0 to 1 mA . The transistor does not saturate.

(ii) Determine the current gain (h_{FE}) of the transistor.

$$
\frac{08}{0.2}=4
$$

(b) A second graph was drawn to show how $\mathrm{V}_{\text {OUT }}$ changed as $\mathrm{V}_{\text {IN }}$ was increased from 0 to 6 V .

Use the graph to determine:
(i) the minimum value of $\mathrm{V}_{\text {IN }}$ required to saturate the transistor;
4.6 V
(ii) the value of $V_{\text {OUT }}$, when $V_{\text {IN }}=3.1 \mathrm{~V}$. $6 v$
(c) $\mathrm{V}_{\mathrm{IN}}=3.1 \mathrm{~V}$ and the load resistor $=120 \Omega$.

Calculate the collector current and the power dissipated in the transistor.
$5+x$ (6) $-120=0.05 \mathrm{~A}$
$P=1+V$ $0.05 \times 6=0.3 \mathrm{w}$
\qquad
8. The following circuit is set up to investigate a transistor switching circuit.

Potentiometer R is varied and readings of $V_{I N}, V_{\text {OUT }} I_{B}$ and I_{C} are taken.
(a) As the base current is increased from 0.2 to 0.8 mA the collector current increases from 16 to 64 mA and the transistor does not saturate.
(i) Complete the graph below to show how the ammeter readings change as I_{B} is increased from 0 to 1 mA . The transistor does not saturate.

(ii) Determine the current gain (h_{FE}) of the transistor.

$$
\frac{0.8}{0.2}=4
$$

(b) A second graph was drawn to show how $\mathrm{V}_{\text {OUT }}$ changed as $\mathrm{V}_{\text {IN }}$ was increased from 0 to 6 V .

Use the graph to detomine:
(i) the minimum value of $\mathrm{V}_{\mathbb{N}}$ required to saturate the transistor;

(ii) the value of $V_{\text {OUT }}$, when $V_{\text {IN }}=3.1 V$.
$6 v$

(c) $\mathrm{V}_{\mathrm{IN}}=3.1 \mathrm{~V}$ and the load resistor $=120 \Omega$.

Calculate the collector current and the power dissipated in the transistor.
$3 \times \quad \sqrt{6} \div 120=0.05 \mathrm{~A}$
$P=1 \mathrm{v} \quad 0.05 \times 6=0.3 \mathrm{w}$ let
\qquad
\qquad
8. The following circuit is set up to investigate a transistor switching circuit.

Potentiometer R is varied and readings of $V_{I N}, V_{\text {OUT }}, \mathrm{I}_{\mathrm{B}}$ and I_{C} are taken.
(a) As the base current is increased from 0.2 to 0.8 mA the collector current increases from 16 to 64 mA and the transistor does not saturate.
(i) Complete the graph below to show how the ammeter readings change as I_{B} is increased from 0 to 1 mA . The transistor does not saturate.

(ii) Determine the current gain $\left(\mathrm{h}_{\mathrm{FE}}\right)$ of the transistor.

$$
F \quad A_{F} E=\frac{I_{C}}{I_{0}} \quad \frac{64}{0}=80 \times 10^{3}
$$

(b) A second graph was drawn to show how $\mathrm{V}_{\text {OUT }}$ changed as $\mathrm{V}_{\text {IN }}$ was increased from 0 to 6 V .
$\mathrm{V}_{\text {OUT }} / \mathrm{V}$

Use the graph to determine:
(i) the minimum value of V_{IN} required to saturate the transistor;

$$
4.6 v
$$

(ii) the value of $\mathrm{V}_{\text {OUT }}$, when $\mathrm{V}_{\mathrm{IN}}=3.1 \mathrm{~V}$.
CV
(c) $\mathrm{V}_{\mathrm{IN}}=3.1 \mathrm{~V}$ and the load resistor $=120 \Omega$.

Calculate the collector current and the power dissipated in the transistor.

$$
\begin{aligned}
& \begin{array}{l}
\text { Is, }=0.125=I_{c} \\
P=V \times I \quad 3.1 \times 0.125
\end{array} \\
& =0.3875 \\
&
\end{aligned}
$$

8. The following circuit is set up to investigate a transistor switching circuit.

Potentiometer R is varied and readings of $V_{I N}, V_{\text {OUT }}, I_{B}$ and I_{C} are taken.
(a) As the base current is increased from 0.2 to 0.8 mA the collector current increases from 16 to 64 mA and the transistor does not saturate.
(i) Complete the graph below to show how the ammeter readings change as I_{B} is increased from 0 to 1 mA . The transistor does not saturate.

(ii) Determine the current gain $\left(\mathrm{h}_{\mathrm{FE}}\right)$ of the transistor.
(b) A second graph was drawn to show how $V_{\text {OUT }}$ changed as $V_{\text {IN }}$ was increased from 0 to 6 V .
$V_{\text {OUT }} / V$

Use the graph to determine:
(i) the minimum value of V_{10}, required to saturate the transistor;

$$
4.6 v
$$

(ii) the value of Q, when $V_{\mathrm{IN}}=3.1 \mathrm{~V}$.
[1]
(c) $\mathrm{V}_{\mathrm{IN}}=3.1 \mathrm{~V}$ and the load resistor $=120 \Omega$.

Calculate the collector current and the power dissipated in the transistor.

$$
15,20=0.125=I_{C}
$$

$$
\begin{aligned}
P=V \times I \quad 3.1 \times 0.125 & =0.3875 \\
& =0.39 w
\end{aligned}
$$

TURN OVER FOR THE LAST QUESTION.

Potentiometer R is varied and readings of $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{OUT}}, \mathrm{I}_{\mathrm{B}}$ and I_{C} are taken.
(a) As the base current is increased from 0.2 to 0.8 mA the collector current increases from 16 to 64 mA and the transistor does not saturate.
(i) Complete the graph below to show how the ammeter readings change as I_{B} is increased from 0 to 1 mA . The transistor does not saturate.

(ii) Determine the current gain $\left(\mathrm{h}_{\mathrm{FE}}\right)$ of the transistor.

$$
h f e=\frac{I c}{I b} \quad \frac{0.8 \mathrm{~mA}^{2}}{64 \mathrm{~mA}}=0.0125
$$

(b) A second graph was drawn to show how $\mathrm{V}_{\text {OUT }}$ changed as $\mathrm{V}_{\text {IN }}$ was increased from 0 to 6 V .
$\mathrm{V}_{\text {OUT }} / \mathrm{V}$

Use the graph to determine:
(i) the minimum value of $\mathrm{V}_{\mathbb{N}}$ required to saturate the transistor; $4.6 v$
(ii) the value of $\mathrm{V}_{\text {OUT }}$, when $\mathrm{V}_{\text {IN }}=3.1 \mathrm{~V}$.

(c) $\mathrm{V}_{\mathrm{IN}}=3.1 \mathrm{~V}$ and the load resistor $=120 \Omega$. Calculate the collector current and the power dissipated in the transistor.
$P=V_{1}$

$$
X=\frac{N}{R} \in \frac{3 \cdot 1}{120}=Q 82583
$$

$0.08 w=3.1 \times 0.02583$

$$
I_{c}=\frac{15}{120}=0.125
$$

Potentiometer R is varied and readings of $\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\text {OUT }}, \mathrm{I}_{\mathrm{B}}$ and I_{C} are taken.
(a) As the base current is increased from 0.2 to 0.8 mA the collector current increases from 16 to 64 mA and the transistor does not saturate.
(i) Complete the graph below to show how the ammeter readings change as I_{B} is increased from 0 to 1 mA . The transistor does not saturate.

(ii) Determine the current gain $\left(\mathrm{h}_{\mathrm{FE}}\right)$ of the transistor.
\qquad
\qquad
\rightarrow (b) A second graph was drawn to show how $\mathrm{V}_{\text {OUT }}$ changed as $\mathrm{V}_{\text {IN }}$ was increased from 0 to 6 V .

Use the graph to determine:
(i) the minimum value of $\mathrm{V}_{\text {IN }}$ required to saturate the transistor;

(ii) the value of $\mathrm{V}_{\text {OUT }}$, when $\mathrm{V}_{\text {IN }}=3.1 \mathrm{~V}$.

- \qquad $6 v$
\qquad

[1]
(c) $V_{\text {IN }}=3.1 \mathrm{~V}$ and the load resistor $=120 \Omega$.

Calculate the collector current and the power dissipated in the transistor.

$$
P=V_{1}
$$

$$
0.08 w=\frac{3.1 \times 0.02583}{x}
$$

$$
D=\frac{8}{R} \in \frac{3.1}{120}=0 \cdot 2583 A
$$

$$
I_{c}=\frac{15}{120}=0.125 \times
$$

TURN OVER FOR THE LAST QUESTION.

9. A system is required to turn on a $12 \mathrm{~V}, 2 \mathrm{~A}$ lamp automatically at night.

The specification for the system is:

- the system requires a 12 V power supply;
- the light level at which the lamp comes on should be adjustable;
- the lamp is capable of being driven directly from the transistor switch output;
- the voltage comparator reference voltage is 3 V .

Complete the circuit diagram for the system by adding:

- the component values required to provide a reference voltage, $\mathrm{V}_{\mathrm{REF}}=3 \mathrm{~V}$;
- the light sensing sub-system;
- a facility for adjusting the light level at which the lamp comes on;
- the transistor switch;
- the output sub-system.

END OF PAPER
9. A system is required to turn on a $12 \mathrm{~V}, 2 \mathrm{~A}$ lamp automatically at night.

The specification for the system is:

- the system requires a 12 V power supply;
- the light level at which the lamp comes on should be adjustable;
- the lamp is capable of being driven clirectly from the transistor switch output;
- the voltage comparator reference voltage is 3 V .

Complete the circuit diagram for the system by adding:

- the component values required to provide a reference voltage, $\mathrm{V}_{\mathrm{REF}}=3 \mathrm{~V}$;
- the light sensing sub-system;
- a facility for adjusting the light level at which the lamp comes on;
- the transistor switch;
- the output sub-system.

END OF PAPER

9. A system is required to turn on a $12 \mathrm{~V}, 2 \mathrm{~A}$ lamp automatically at night.

The specification for the system is:

- the system requires a 12 V power supply;
- the light level at which the lamp comes on should be adjustable;
- the lamp is capable of being driven directly from the transistor switch output;
- the voltage comparator reference voltage is 3 V .

Complete the circuit diagram for the system by adding:

- the component values required to provide a reference voltage, $\mathrm{V}_{\mathrm{REF}}=3 \mathrm{~V}$;
- the light sensing sub-system;
- a facility for adjusting the light level at which the lamp comes on;
- the transistor switch;
- the output subsystem.

END OF PAPER

9. A system is required to turn on a $12 \mathrm{~V}, 2 \mathrm{~A}$ lamp automatically at night.

The specification for the system is:

- the system requires a 12 V power supply;
- the light level at which the lamp comes on should be adjustable;
- the lamp is capable of being driven directly from the transistor switch output;
- the voltage comparator reference voltage is 3 V .

Complete the circuit diagram for the system by adding:

- the component values required to provide a reference voltage, $\mathrm{V}_{\mathrm{REF}}=3 \mathrm{~V}$;
- the light sensing sub-system;
- a facility for adjusting the light level at which the lamp comes on;
- the transistor switch;
- the output sub-system.

END OF PAPER
9. A system is required to tum on a $12 \mathrm{~V}, 2 \mathrm{~A}$ lamp automatically at night.

The specification for the system is:

- the system requires a 12 V power supply;
- the light level at which the lamp comes on should be adjustable;
- the lamp is capable of being driven directly from the transistor switch output;
- the voltage comparator reference voltage is 3 V .

Complete the circuit diagram for the system by adding:

- the component values required to provide a reference voltage, $\mathrm{V}_{\mathrm{REF}}=3 \mathrm{~V}$;
- the light sensing sub-system;
- a facility for adjusting the light level at whicn the lamp comes on;
- the transistor switch;
- the output sub-system.

END OF PAPER
9. A system is required to turn on a $12 \mathrm{~V}, 2 \mathrm{~A}$ lamp automatically at night.

The specification for the system is:

- the system requires a 12 V power supply;
- the light level at which the lamp comes on should be adjustable;
- the lamp is capable of being driven directly from the transistor switch output;
- the voltage comparator reference voltage is 3 V .

Complete the circuit diagram for the system by adding:

- the component values required to provide a reference voltage, $\mathrm{V}_{\mathrm{REF}}=3 \mathrm{~V}$;
- the light sensing sub-system;
- a facility for adjusting the light level at which the lamp comes on;
- the transistor switch;
- the output sub-system.

END OF PAPER
9. A system is required to turn on a $12 \mathrm{~V}, 2 \mathrm{~A}$ lamp automatically at night.

The specification for the system is:

- the system requires a 12 V power supply;
- the light level at which the lamp comes on should be adjustable;
- the lamp is capable of being driven directly from the transistor switch output;
- the voltage comparator reference voltage is 3 V .

Complete the circuit diagram for the system by adding:

- the component values required to provide a reference voltage, $\mathrm{V}_{\mathrm{REF}}=3 \mathrm{~V}$;
- the light sensing sub-system;
- a facility for adjusting the light level at which the lamp comes on;
- the transistor switch;
- the output sub-system.

END OF PAPER

